Information Filtering via Balanced Diffusion on Bipartite Networks

نویسندگان

  • Da-Cheng Nie
  • Ya-Hui An
  • Qiang Dong
  • Yan Fu
  • Tao Zhou
چکیده

Recent decade has witnessed the increasing popularity of recommender systems, which help users acquire relevant commodities and services from overwhelming resources on Internet. Some simple physical diffusion processes have been used to design effective recommendation algorithms for user-object bipartite networks, typically mass diffusion (MD) and heat conduction (HC) algorithms which have different advantages respectively on accuracy and diversity. In this paper, we investigate the effect of weight assignment in the hybrid of MD and HC, and find that a new hybrid algorithm of MD and HC with balanced weights will achieve the optimal recommendation results, we name it balanced diffusion (BD) algorithm. Numerical experiments on three benchmark data sets, MovieLens, Netflix and RateY ourMusic(RYM), show that the performance of BD algorithm outperforms the existing diffusion-based methods on the three important recommendation metrics, accuracy, diversity and novelty. Specifically, it can not only provide accurately recommendation results, but also yield higher diversity and novelty in recommendations by accurately recommending unpopular objects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balanced clusters and diffusion process in signed networks

In this paper we study the topology effects on diffusion process in signed networks. Considering a simple threshold model for diffusion process, it is extended to signed networks and some appropriate definitions are proposed. This model is a basic model that could be extended and applied in analyzing dynamics of many real phenomena such as opinion forming or innovation diffusion in social netwo...

متن کامل

Information Filtering in Sparse Online Systems: Recommendation via Semi-Local Diffusion

With the rapid growth of the Internet and overwhelming amount of information and choices that people are confronted with, recommender systems have been developed to effectively support users' decision-making process in the online systems. However, many recommendation algorithms suffer from the data sparsity problem, i.e. the user-object bipartite networks are so sparse that algorithms cannot ac...

متن کامل

Designing an Ontology for Knowledge Discovery in Iran’s Vaccine

Ontology is a requirement engineering product and the key to knowledge discovery. It includes the terminology to describe a set of facts, assumptions, and relations with which the detailed meanings of vocabularies among communities can be determined. This is a qualitative content analysis research. This study has made use of ontology for the first time to discover the knowledge of vaccine in Ir...

متن کامل

A generalized model via random walks for information filtering

There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model cou...

متن کامل

Information filtering via preferential diffusion

Recommender systems have shown great potential in addressing the information overload problem, namely helping users in finding interesting and relevant objects within a huge information space. Some physical dynamics, including the heat conduction process and mass or energy diffusion on networks, have recently found applications in personalized recommendation. Most of the previous studies focus ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1402.5774  شماره 

صفحات  -

تاریخ انتشار 2014