Information Filtering via Balanced Diffusion on Bipartite Networks
نویسندگان
چکیده
Recent decade has witnessed the increasing popularity of recommender systems, which help users acquire relevant commodities and services from overwhelming resources on Internet. Some simple physical diffusion processes have been used to design effective recommendation algorithms for user-object bipartite networks, typically mass diffusion (MD) and heat conduction (HC) algorithms which have different advantages respectively on accuracy and diversity. In this paper, we investigate the effect of weight assignment in the hybrid of MD and HC, and find that a new hybrid algorithm of MD and HC with balanced weights will achieve the optimal recommendation results, we name it balanced diffusion (BD) algorithm. Numerical experiments on three benchmark data sets, MovieLens, Netflix and RateY ourMusic(RYM), show that the performance of BD algorithm outperforms the existing diffusion-based methods on the three important recommendation metrics, accuracy, diversity and novelty. Specifically, it can not only provide accurately recommendation results, but also yield higher diversity and novelty in recommendations by accurately recommending unpopular objects.
منابع مشابه
Balanced clusters and diffusion process in signed networks
In this paper we study the topology effects on diffusion process in signed networks. Considering a simple threshold model for diffusion process, it is extended to signed networks and some appropriate definitions are proposed. This model is a basic model that could be extended and applied in analyzing dynamics of many real phenomena such as opinion forming or innovation diffusion in social netwo...
متن کاملInformation Filtering in Sparse Online Systems: Recommendation via Semi-Local Diffusion
With the rapid growth of the Internet and overwhelming amount of information and choices that people are confronted with, recommender systems have been developed to effectively support users' decision-making process in the online systems. However, many recommendation algorithms suffer from the data sparsity problem, i.e. the user-object bipartite networks are so sparse that algorithms cannot ac...
متن کاملDesigning an Ontology for Knowledge Discovery in Iran’s Vaccine
Ontology is a requirement engineering product and the key to knowledge discovery. It includes the terminology to describe a set of facts, assumptions, and relations with which the detailed meanings of vocabularies among communities can be determined. This is a qualitative content analysis research. This study has made use of ontology for the first time to discover the knowledge of vaccine in Ir...
متن کاملA generalized model via random walks for information filtering
There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model cou...
متن کاملInformation filtering via preferential diffusion
Recommender systems have shown great potential in addressing the information overload problem, namely helping users in finding interesting and relevant objects within a huge information space. Some physical dynamics, including the heat conduction process and mass or energy diffusion on networks, have recently found applications in personalized recommendation. Most of the previous studies focus ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1402.5774 شماره
صفحات -
تاریخ انتشار 2014